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UTILIZATIONOFA PRIORI INFORMATION BY MEANS OF MATHEMATICAL PROGRAMMING

IN THE STATISTICAL INTERPRETATION OF MEASURED DISTRIBUTIONS

ABSTRACT

0
A statistical approach is developed for unfolding instrument mea-

surements which are related to an unknown function by a linear integral

transformation. If statistical uncertainties are present in the measured

function and in the kernel of the transformation_ then the use of

priori information is shown to be necessary for a nontrivial solution.

Without such information; an infinite-width confidence interval can be

found for any nontrivial function of the unknown function. Suitable a

priori information_ however_ nearly always exists in physically motivated

problems. The weakest form of a priori information considered is simple

nonnegativity. Stronger a priori information_ such as smooth or monotonic

behavior; can be put in the same form as simple nonnegativity by suitable

transformation. The unfolding problem requires two steps: selecting a

set of functions of the unknown function to adequately describe the func-

tion and then numerically obtaining the width of the confidence interval

for each function. Several computational techniques based upon linear

and quadratic programming are described. Finally; the method is illus-

trated by unfolding gamma-ray and neutron spectra from pulse-height

distributions obtained with scintillation spectrometers and by solving

a poorly conditioned set of equations. A/JZ>
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i. INTRODUCTION

Statement of problem

A problem encountered by many experimentalists in different fields

is created by experimental measurements of a distribution x(s) yielding

a result b(t) which is different from the one actually desired due to

distortions introduced by the instrument. Some familiar examples of dis-

tortions are those occurring

i. in a neutron or gamma-ray spectrum in the pulse-height distribution

of a multichannel scintillation spectrometer,

2. when scanning with a telescope or directional antenna_ due to the

finite width of the response pattern_

3. in the measurement of optical or infrared spectra, due to the infin-

ite width "line" of the spectrometer.

More generally_ in this type of problem the operation of the measuring

instrument may be symbolically denoted by the operator O. Then 0

"operates" upon the desired distribution, or spectrum, x(s) and yields

the observed distribution b(t):

0 x(s) = b(t) . (!.I)

Frequently, many interesting measurements may be characterized to a very

good approximation by a linear operator. Equation (i.i) can then be

written as the linear integral equation

_K(t,s) x(s) ds : b(t) , (1.2)
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where K(t,s) is the response function (or Green's function) of the meas-

uring apparatus, x(s) is the distribution function, or spectrum, we

desire to measure, and b(t) is the experimental distribution. The vari-

able s may be continuous or may be discrete if the spectrum consists of

components at certain values of s. The variable t may also be continu-

ous, as when scanning an antenna through a continuous angle, or discrete

as obtained with a multichannel pulse-height analyzer. Figure i is a

sketch of the function K(t,s) for a gamma-ray scintillation spectrom-

eter, in which s is continuous, corresponding to the energy E of the

incident particle, and t is discrete, corresponding to the channel number

i of a multichannel analyzer. In the appropriate notation for this prob-

lem, the kernel is written as Ki(E ) and is interpreted as the probability

that a gamma ray of energy E will result in a count in channel i.

Statistical considerations

In practice, the operator 0 does not always yield the same distri-

bution b(t) when applied to the same spectrum, or distribution, x(s) be-

cause of noise in the measuring instrument, because of the statistics

associated with the particular nature of x(s), or because 0 itself may

be stochastic. Thus a sequence bl(t), b2(t), .... results from the

experiment being repeated under identical physical conditions. In any

actual measurement, b(t) will not be known, but only a member of the

ensemble of possible distributions is measured.

Specific applications

As already mentioned, one of the most frequent problems is cor-

recting for the effects of nonperfect line shape in various kinds of
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Fig. i. A sketch of the kernel K(t_s) for a gamma-ray scintillation

spectrometer.
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spectrometers (i_8). I The response of electrical networks can be ex-

pressed as a convolution of the network "transient response" with the

input signal, so that the network problem is a special case of the more

general problem (9,10). Problems in the analysis of scintillation spec-

trometers (llw16) are of considerable interest. Other applications

occur in meterology (17), in analysis of diffraction data (18), and in

crystallography (19). Among the earlier nuclear spectroscopy correction

methods, a method of determining the spectrum of x radiation from the

shape of an absorption curve was published in 1932 by Silberstein (20).

In addition, the purely numerical aspects of inverting the general

Fredholm integral equation are of interest (21--25). Of a very similar

type are certain fundamental problems in wave mechanics (26).

Inversion or unfolding methods

Ignoring for the moment the uncertainty in b(t), the determina-

tion of x(s) from b(t) is sometimes referred to as inversion or

"unfolding." The latter term stems from the German usage of "Faltung"

(folding) for the integral in Eq. (1.2). Several different methods are

known for obtaining the formal solution (27), but, as was mentioned, the

formal methods are not applicable if the function b(t) is known only as

a curve or as a set of tabulated points (at discrete t). In place of a

formal solution, various numerical techniques have been employed (28--36).

Many of these numerical techniques make use of the equivalence between

iSee "List of References" at end of paper.
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the integral equation and a system of linear equations of sufficiently

high order. Them the set of equations is solved by standard numerical

techniques. Some other techniques consider the problem in its contin-

uous form and make use of numerical integration formulas to reduce it to

a finite form for computation. Among the earliest numerical formulas

was one developed by Eddington in 1913 (37) for correcting astronomical

observations for the smearing effect of a known standard error of obser-

vation. More recent work on this problem is summarized by Trumpler and

Weaver (38).

Solution by statistical estimation

When the right-hand side, b(t), of Eq. (1.2) is a random sample

from an ensemble of possible distributions, statistical estimation may

be used to find the solution. The simplest case occurs when both s and

t are discrete variables with values of (sl, s2, ... Sn) and (tl, t2, ...

tm). Then the integral equation may be written as a matrix equation:

Kx = b , (1.3)

where Kij = K(ti,sj) , and x and b are vectors. The determination of the

elements of x (or of any function of the elements) is a standard problem

in linear estimation (39--41). If rank K = n, then a solution with a

finite-width confidence inter_l can be found by ordinary least-squares

techniques. But if the equation is overdetermined (with n > m) or if

x(s) is continuous instead of discrete, then special techniques have to

be used. If the kernel K(s,t) is known exactly, it is still possible to

find estimates of certain combinations of the elements, even if it is

impossible to estimate x(s) itself.
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Nonuniqueness of solution

If there are some solutions x(s) h to the homogeneous equation

x(s)as = 0 , (1.4)

then they may be added to any solution x(s) of Eq. (1.2_ and x(s) + x(s) h

will still be a solution. Thus the solution x(s) is not unique if any

solutions to the homogeneous equation are possible. Experimentally this

may be interpreted by noticing that there are "invisible" components

which the spectrometer cannot see. For example, if a rectangular or

triangular "line shape" with a full width at half maximum of W is con-

voluted with a sinusoidal function, then no output b(t) will result if

the period of the sinusoid is an exact submultiple of W. For the more

realistic Gaussian line shape, a sinusoidal x(s) is attenuated quite

strongly as the period becomes much smaller than W, as shown in Fig. 2.

In fact, for an___ykernel which is merely integrable, the attenuation of

a sinusoidal distribution increases without limit as the period of the

sinusoid decreases. Thus the solution to Eq. (1.2) when s is continuous

must always be nonunique in the sense that an arbitrarily large amount

of a sinusoidal component can be added to the solution and still satisfy

the equation to within any prescribed nonzero amount.

In addition, when b(t) is uncertain by a small amount, there may

be components which nearly satisfy the homogeneous equation (1.4) such

that the residual is smaller than the uncertainty in b(t). Then these

"nearly invisible" components must also be accepted as valid solutions

to (1.2) since they satisfy the equation to within the uncertainty in

b(t). Moreover, if x(s) is continuous, it will be shown that not only

L
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is the solution nonunique but also that any arbitrarily prescribed linear

function of the solution is nonunique if both K(t,s) and b(t) are uncer-

tain by a nonzero amount.

If it is impossible to unfold Eq. (1.2) in the presence of small

uncertainties, then how can the previously successful results of the

papers cited be explained? It is my contention that the success of those

methods is based on the subtle use of certain information that is usually

not recognized as such by the experimenter. In devising a workable scheme

for interpreting the data, intuition apparently guides us to choose a

mathematical process that includes someadditional information. But

however plausible these results seem, it is still desirable to uncover

the underlying assumptions and to give error bounds that are as sharp

as possible. Thus it is my purpose to attempt to implement Laplace's

famous remark that statistics is commonsense reduced to mathematics.

Although the general subject of unfolding is not yet mature in the

sense that the underlying principles are commonlyagreed upon, a rapidly

increasing amount of work is being devoted to practical aspects of the

problem. Thus it seemsappropriate to review the basic ideas behind

the statistical treatment and to try to put the current methods into an

overall perspective. The unifying concept that will be used is the idea

of constrained estimation by meansof mathematical programming.

A priori information

By a priori information is meant that information about x(s)

which the experimenter has before he begins the experiment. For example,

some information that the experimenter might know in advance is:
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i. x(s) is slowly varying with a few discrete peaks superimposed,

2. x(s) cannot be negative_

3. x(s) is bounded,with x(s)

A priori information such as item 2 is inherent in certain types of

experiments. In the spectroscopy of neutrons or gamma rays, for example,

the number of incident particles per unit energy cannot physically be

negative. Almost always the experimenter has some information about

the results which he knows with certainty. Thus, although a crystallog-

rapher may not know where in a molecule a certain atom is, he may know

the maximum possible size for the molecule and thus know the location

of a given atom to within, say, a fraction of a centimeter•

Remarkably, the simplest inequality constraint -- nonnegativity --

is often sufficient to constrain the arbitrary components in the solu-

tion to small values. In addition, it turns out that the nonnegativity

can easily be extended to more general types of inequality constraints•

For example, in a discrete space of n dimensions, several inequality

conditions take one of the following forms:

> 0, (i = i, 2, . n) ,nonnegativity: x i = ..

> > > >
monotonic decreasing: x = x = x = ... = xn ,

l 2 $

bounded: io. > x. > (i = i, 2, n)m m = uPi

These constraint regions are shown for a 2-dimensional space in Fig. 3.

Of course_ there may be a great deal of other information which the

experimenter has about the nature of the solution. The practical prob-

lem is to include as much of this information as is necessary to yield

a suitable result. Although in this paper the a priori conditions that
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can be expressed as linear inequalities are stressed_ many other kinds

are possible. For example_ it maybe known from theoretical considera-

tions that there must be a certain minimumspacing between discrete com-

ponents in x(s). Such a case arises when analyzing the time decay spec-

trum (42) in the decay of a neutron population in a subcritical assembly.

Constrained estimatiom

By "unscrambling" is meant an extension of the ordinary ideas of

estimation so that any a priori information that may be known can be

considered in addition to the usual statistical information. In partic-

ular, it will be shown that confidence intervals for functions of x(s)

can be found from the intersection of two sets. One is analogous to the

statistical confidence region for ordinary regression_ and the other to

the a priori constraint set as shown in Fig. 3. Then unscrambling con-

sists of two steps: (i) a series of questions about x(s) which must be

posed in suitable mathematical form leading to a numerical value_ and

(2) the confidence interval which must be determined for each numerical

value which takes into account all the available statistical information

and all available a priori information.

In order to find the confidence interval 3 two extremal problems

will be solved_ one for each edge of the interval_ by the techniques of

mathematical programming. Mathematical programming is the maximization

of a prescribed function with certain inequality constraints. In the

present case_ the constraints will be the ordinary statistical confi-

dence region and the a priori constraint set_ and the functions to be

maximized will be determined by the questions posed concerning x(s).

L
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Fig. 3. Two-dimensional regions corresponding to certain a priori

inequality constraints.
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Mathematical programming is relatively unfamiliar in the physical sci-

ences because solutions generally have to be determined numerically and

because the numerical calculations necessary have become economically

feasible only since the development of large-scale computers.

Organization of report____

Ordinary linear estimation theory is reviewed briefly in Chapter

2 and is extended to constrained estimation in Chapter 3, where it is

shown that the constrained estimation problem can be posed as an extremal

problem_ soluble by the methods of mathematical programming, which re-

duces to ordinary estimation in the absence of any a priori information.

How a problem with a continuous variable s may be reduced to discrete

form is shown in Chapter 4; how it is put into a suitable form for

solution by existing quadratic programming algorithms is shown in Chap-

ter 5. Since the present quadratic programming algorithms are relatively

inefficient for computation_ Chapter 6 introduces an approximation which

allows the problem to be solved by a linear programming algorithm.

In order to gain insight into the linear programming method and

to develop some background necessary for an analysis of errors due to

uncertainty in the kernel_ some ideas concerning primal-dual relations

in mathematical programming are introduced in Chapter 7. This material

is the basis for the overall error analysis problem treated in Chapter 8.

In Chapter 9 another simplification is made which leads to a simple

program but does not give as sharp results as the previous methods.

Since any method must ultimately be evaluated on the basis of its success
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in practical applications_ several applications of the theory to prob-

lems in nuclear spectroscopy and applied mathematics are summarized in

Chapter i0. Someextensions to the method which allow it to take into

account other types of a priori conditions_ such as smoothness_are

given in Chapter ii. Conclusions from the present work and somepre-

dicted extrapolations to future use are given in the concluding chapter.
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2. ORDINARYESTIMATION

Linear estimation

A frequent approach to inverting (or unfolding) Eq. (1.2) for

x(s) is to replace the integral equation with a set of simultaneous

linear equations and to determine the solution x = (xl, x2, ... Xn) and

variance of the solution_ _2(xl) , a2(x2) , ... _2(Xn) , by least-squares

analysis. This is the standard problem of "linear estimation" in statis-

tics (39,40). In order to obtain a finite set of equations, a set of

Sj (SI, S _ ...• = Sn) can be selected. Then

K1(sI) xI +Kl(s2) x2 + ... +Ki(Sn) xn = bI

ee. eee .e

_m(S) xI + Km(S2) x_ + ...+ _(Sn) _ = bm (2.1.1)

or, in matrix form_

where

= b , (2.1.2)

Kij :Ki(sj) i =l, 2, ...m
j = I, 2, ... n .

(2.1.3)

Equations (2.1) are indeterminate if n _ m, can be solved by

ordinary matrix inversion if n = m, or can be solved by least-squares

analysis if n = m. If n _ m, it may not be possible to find a solution

x = -(xl, x2, "'" L_-x_)which satisfies all m equations when b is used as
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the right-hand side, because of the statistical errors in _.i But a

solution x can always be determined so that the sumof squares of the

residuals is minimum [with the square of the residuals weighted by (i/a_)

in order to take proper account of the varying accuracy of the bi] . In

matrix form2 the weighted sumof the square of the residuals

m

[(m -%)i/oi]2
i=l

may be written

_2: (m _%) s-_ (m _%) , (2.2)

where S is the variance matrix of b. The diagonal elements S.. are the
ii

square of the standard deviation of bi, and the off-diagonal elements Sij

are the covariance between b. and b.. By the definition of the variance
l j

matrix, S.. = S.. and thus S is symmetric. In many cases, the elements
ij jm

of b are statistically independent so that the covariance components are

zero and S reduces to a diagonal matrix. The present results, however,

hold in general.

/%

To find the value of x = x which minimizes e2, the derivative of e2

with respect to each component of x is set equal to zero. Then

d_--#_= 2[KT S-_ (_ -%)] = 0
dx. j

J

for j = i, 2, ... n . (2.3)

iThe notation _ over a letter indicates an estimate of the random

vector.

2The subscript i denotes the ith element of a vector.
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The easily verified rule that d(yTQy)/dyj : 2 (Qy)j is used for matrix

differentiation. Rearranging Eq. (2.3) gives the "normal equations" of

least-squares analysis

(K T S -1 K) x = KTs -1 t (2.4)

which has the formal solution

= (KT s-_K)-_KT S-_% (2_)

if (KT S -I K) is nonsingular.

The variance matrix V(x) of x has diagonal elements equal to

_(_ x)_

and off-diagonal elements equal to

_,(_ - x) i (?_- x)j,

where the operator E gives the average over the statistical distribution

of its operand.

The variance matrix of x is easily found in terms of S:

V(_) = E[(K T S -I K) -l KT S -I (_ - b)][(K T S -I K) -l KT S -I (b - b)] T

= (KT S -I K) -l KT S-I [E(b - b)(t - b) T] S -l K (KT S -l K) -I

: (KT s-IK)-_ . (2.6)

The fact that E[(_ - b)(_ - b)T] : S and that (KTs-IK) = (KTs-IK) T is

used in the above equations. Thus the variance of x. is given by the
J

diagonal elements of (KTs-IK) -I, and, more generally, the variance of

any linear combination

A A A _ T_
¢ = clx I + c2x 2 + ... + CnX n = c x (2.7)
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(2.8)

,I

Note that estimation of the linear combination _ includes estimation of

a single x. if c. : 1.0 and all other c's : 0.
O J

Confidence intervals

If the spectrum x(s) is known in advance to be discrete, with

then the solutions x to the least-
component only at Sl, s2, ... Sn, J

squares problem are the intensities of the discrete (delta function)

components, and confidence intervals can be constructed which will give

a measure of the trust that can be put in the estimate. The confidence

interval for a linear function, _, is given by

PrE¢-K _(_)<-_ - _o* _ o($)]: c , (2.9)

where K depends upon the confidence level coefficient 5. The probability

interpretation of the confidence interval [_lo _up] is that on repeated

measurements under the same conditions a fraction _ of the confidence

intervals will include the true value _. If the b. are independently
l

normally distributed with known variance, then as is well known (40) the

confidence coefficient is related to K by:

K
i

(2.10)

A few specific values of interest are given below:

5, confidence level K

0.6827 i.---O

0.9545 2.0
0.9973 9.0

0.9999 4.0
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Of great importance is the question of the proper intez'pretation

to give to the componentsx. of the linear estimation problem when theJ
spectrum x(s) is not knownto be discrete, but maybe continuous or have

continuous parts. Equations (2.5) and (2.7) show that the estimate of
T

any combination of the componentsx. given by c x maybe expressed inJ
terms of the experimental values of b. by

i

(2 .ii )

The dependence of _0 upon x(s) can now be seen by noting that each com-

ponent bi is related to the spectrum x(s) by Ki(s). Thus the combina-

tion of b's given by Eq. (2.11) is related to x(s) by

= _ L(s)x(s)as , (2.12)

where

m

L(s)- _ u_ K(s)
i=l

, (2.14)

with

T cT(_:TS-I_:)-Z_:TS-1 (2.15)U -=--

Because of their special importance, these coefficients u., which
1

appear in the brackets of Eq. (2.11), are called "coefficients of com-

bination" and the function L(s) is called the "sensitivity function."



My overall point of view toward estimation is based strongly on the idea

of seeking a combination of the experimental data points, _i' such that

the combination estimates somefunction of x(s) which is of interest to

the experimenter. Generally, the experimenter will be interested in

manysuch functions, and a different set of ui will be determined for

each one. The linear estimation procedure can be thought of as a method

for determining a set of coefficients which synthesize the natural re-

sponse functions Ki(s) of the measuring instrument into the new combina-

tion L(s), which more closely approximates the desired functions. The

sensitivity function concept is discussed in manystatistics books in

a more general context, and has recently been emphasizedin the analysis

of photonuclear cross sections by Penfold and Leiss (43).

Figure 4 is a sketch of the sensitivity function corresponding to

¢ = x + x for typical least-squares analysis with m >> n° Note that
4 5

the sensitivity function is 1.0 at s4 and s 5 and is 0.0 at all other

values of sj. However, it is not zero at all s, but only at those that

were selected when the equations were set up. Thus, as required, the

least-squares analysis gives the correct result if the only possible

cemponents of x(s) are known in advance to be located at s = (Sl, $2,

... sn). In statistics, this requirement that the sensitivity function

agree with the coefficients c in Eq. (2.7) at the values of sj is known

as the "unbiased condition." In terms of the coefficients of combina-

tion u, it takes the algebraic form

T (2,18)c - uTK = 0 ,

where the matrix elements are evaluated according to Eq. (2.1.3) at

s = (s, s2, ... s ).1 n
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The famous Markov dual formulation of the least-squares problem

states that the linear estimation may be approached as follows:

Select coefficients of combination u = (u13 u2, ... um) so that JT T T
c2(_) = u Su is minimized with the constraint that u K - c = 0.

(2.19)

This minimization problem can easily be solved by use of Lagrange

multipliers and leads to the following equations:

= uTsu _ (uTK - cT)p , (2.20.1)

_# (2.20.2)
= 0_ i = 13 23 ... m

i

k = i, 2, ... n, (2.20.3)

where p = (PI' P2' "'" Pn) is a vector of I_grange multipliers.

By solving Eq. (2.20.2) for u and eliminating the Lagrange multi-

pliers between the result and Eq. (2.20.3),

T cT( Fs-IK) KTs ,u = (2.21)

which is the same result obtained when the weighted sum of squares

of the residuals is minimized. This dual approach shows that using

i/_ weights is superior to using all other possible weights (such as

equal weighting 3 etc.) if the objective is a small variance in the

resulting estimates _.

A heuristic interpretation of the Gauss-Markov theorem is that

m rows of K are sufficient to satisfy the constraints uTK = c_ but if

there are more than sufficient rows 3 there are many possible ways of
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selecting u = (Ul, u2, ... Um)so that the constraint holds. The least-

squares method (according to the Markov theorem) selects that particular

combination which results in the least variance.

Histogram approximation

The least-squares method has sometimes been applied in the ex-

pectation that the estimates Xl, x2, ... Xn would form a histogram

approximation to the spectrum x(s), with

i (s. + Sj+l)j

x. :
J

+sj_l)

x(s) ds (2.22)

This is true only to the extent that the sensitivity functions for each

x. have the rectangular step form
J

L(s) : { 1 if s. < s -< s0 otherwise l i+l '. (2.29)

A comparison of this ideal histogram function with the sensitivity func-

tion resulting from a typical least-squares analysis is shown in Fig. 5-

In this case, the histogram approximation is quite poor, since least

squares ignores all points between the selected points s. =j (Sl' S2,

Sn). An improvement up to a point in the histogram approximation00o

may be obtained by increasing the number of points to be matched, as in

Fig. 4. But when the number of points is increased, the variance begins

to increase_ although the sensitivity function may more nearly
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Fig. 5. Comparison of ideal histogram function with edges at

i/2(s s + s4) and i/2(s 4 + s5) and the sensitivity function L(s) result-

ing from least-squares analysis.
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agree with the histogram function. Practically, it becomes increasingly

m
v-l

difficult to pass the combination _ uiKi(s ) through n specified points

i=l

c = (el, 02, ... Cn) at s = (Sl, s2, ... Sn) as the number of points

increases, unless the coefficient vector c happens to be an exact com-

bination of only a few of the rows of K. Similarly, as n increases, the

least-squares matrix KTS-IK bec_nes more poorly conditioned until it

finally becomes singular when n > m. The increase in variance is due to

an increase in the magnitude of coefficients of combination u i given

by Eq. (2.21) which are necessary to achieve the unbiased condition at

the match points s = (Sl, s2, ... Sn).

A conceptual barrier to obtaining an insight into the minimum

variance form of least-squares estimation is the tendency by experi-

menters to think of Ki(s ) exclusively as a function of i since Ki(s ) vs

i is the pulse-height distribution obtained for a monoenergetic test

spectrum. But the functions Ki(s ) vs s may equally well be interpreted

as the counting efficiency of the ith count bin of a multichannel scin-

tillation spectrometer for a unit intensity source of continuously ad-

justable energy s. Using the example of an organic scintillator neutron

spectrometer, graphs of Ki(s ) vs i for several values of s and vs s for

several values of i are shown in Figs. 6 and 7, respectively.

Window functions

It has been shown that ordinary linear estimation leads to esti-

mates of quantities of the form

m

i=l

(2.24)
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m

where the sensitivity function _ uiKi(s ) is given by a linear com-

i=l

bination of the response functions. Also, it is not possible to obtain

a rigorous histogram form of the spectrum from ordinary linear estima-

tion because the required corners on the histogram function cannot be

fitted by the smoothly varying Ki(s ) .

An alternative to obtaining a histogram fit is to consider a more

general approach of obtaining a set of estimates corresponding to

"window functions." These window functions are denoted by w(s) and

are the functions for which it is desired to obtain an estimate of

= fw(s) x(s) ds . (2.25)

In other words, ¢ is the response of an ideal detector with a response

window of "transmission" w(s). Usually_ experimental considerations

will suggest desirable forms for the window functions. For example_ a

set of conceivable window functions is shown in Fig. 8. In this set_

there are several windows of the bank-pass type. In addition, there is

a window equal to a constant and a window proportional to s which will

yield, respectively, the zero and first moments of x(s) More generally

any function of interest could be included, such as a flux-to-dose con-

version, an activation cross section, etco

From the minimum variance interpretation of ordinary estimation_

the problem is to obtain unbiased estimates to each of these windows at

selected match points s = (sl, s2, ... Sn) such that the variance in the

resulting estimates is minimized. But generally the variance is infin-

ite if n > m, unless the window function turns out to be an exact
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Fig. 8. A set of window functions: (a) - (e) yield band-pass fil-

ter type of estimates, ¢ = f w(s) x(s) ds; (f) is a constant which yields

an estimate of the zero moment, ¢ = f x(s) ds; and (g) yields an estimate
proportional to the first moment, ¢ = _ s x(s) ds.
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combination of the response functions K.(s) so that a match at n points
i

ensures a match at all points. Thus the function chosen for a window

cannot be just any function, but must be an estimable function. Usually,

an estimable function cannot be guessed before the analysis; instead, a

set of plausible window functions must be proposed, values w. = (
8 Wl' w2'

... w ) must be picked at the match points, and then the sensitivity
n

functions found that correspond to each window. If the analysis is to

be meaningful, the sensitivity functions should be close to the desired

window functions at all values of s. If they are not, either new window

functions or a new set of match points must be selected. Heuristically

w(s)_ay be thought of as the response function of a conceptual "non-

existent" instrument that the experimenter wishes to estimate the response

fo_ based on the actual instrument response b. L(s) is the "best" ap-

proximation which can be formed from the actual instrument response func-

tions K.(s).
i

Errors in the matrix

In ordinary least-squares analysis, errors in the elements of the

matrix K can be included in the estimates of the confidence interval if

the problem is not underdetermined by expanding the matrix about the

given values and carrying only first-order terms in the error. But when

the problem is underdetermined, even if the windows are an exact com-

bination of q of the rows of the matrix, any error in one of the q rows

will yield an infinite error for the estimate.



-33-

3. CONSTRAINED ESTIMATION

We have seen that the confidence intervals obtained by the usual

least-squares approach to unfolding instrument response have a straight-

forward interpretation if the unknown spectrum is known in advance to be

discrete. But if there is a possibility that the spectrum is continu-

ous_ or partially continuous_ then only certain special functions can

be estimated of the form

m

, = uiKi(s) x(s)ds ,
i=l

T-_

where ) u.K.(s) is a linear combination of the response functions and
A_ j ll

i=l

is called the "sensitivity function." If estimation of some particular

function is desired_ for example_ obtaining a histogram representation of

the spectrum or obtaining the integral of x(s) weighted with some desired

function w(s)_ a sensitivity function cannot be obtained which agrees

with the desired function at more than r points (where r is the rank of

the estimation matrix)_ unless the window function is an exact linear

combination of some of the rows of K. Generally_ however_ if agreement

at r points is forced_ the variance in the resulting interval is very

large_ and a smaller number of points of agreement must be selected.

Experimentalists have long felt that this type of problem ought

to have a sensible solution_ and various ad hoc techniques have been

devised. The resulting methods have frequently embroiled statisticians

and experimentalists in lively controversy. Usually the experimentalist
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has been content to publish reasonable results as a point estimate with-

out any assigned error or to give the error based on the propagation of

counting errors only, ignoring the shape of the sensitivity function

[and, with a very few exceptions, (43_ never calculating it or realizing

that it existed].

Inequality method

The key to these problems in the case of the scintillation spec-

trometer and similar situations is to drop the unbiased condition, which is

for continuous s of the form m

w(s) : _, uiKi(s )

i=l

and replace it with the pair of inequalities

m m

Zlo < <Zu Kiu. K.(s) : w(s): u. (s)
1 1 l "

i=l i=l

(3.1)

This new requirement is shown graphically in Fig. _ where the single

sensitivity function has been replaced by upper and lower sensitivity

functions. Then the estimate corresponding to the desired window

function lies in the interval between the estimates corresponding to

the upper and lower sensitivity function. Thus the desired (possibly

inestimable) function is bracketed between two estimable functions:

the upper sensitivity function for obtaining the upper confidence limit

and the lower sensitivity function for obtaining the lower confidence

limit. Thus

L J
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Fig. 9. Bracketing of an inestimable window function between two
estimable functions.
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where the constant K depends upon the confidence level desired. Con-

sideration of the exact value of K to attain a specified confidence

level is deferred until Chapter 7, where the relation of the inequality

method to ordinary estimation is shown.

With the inequality method, the window functions can be chosen

arbitrarily. Of course_ very narrow or very abrupt functions will not

be bracketed as closely as smoother broader functions_ but the difference

is now one of degree and there is no longer any fundamental distinction

between obtaining a confidence interval for an estimable function and an

inestimable function. Notice, however, that the equality in Eq. (2.9)

has been replaced by an inequality in Eq. (3.2), since any number of

different upper and lower sensitivity functions can be obtained which

yield different estimates.

A priori information

At first sight_ it does not seem that any new information has

been used in the inequality method. However, in order for the upper

sensitivity function to yield an upper estimate for ¢, the spectral func-

tion must be nonnegative, x(s) _ 0. Otherwise_ the estimate based on the

upper sensitivity function might be smaller than that based on the window

function. Thus the nonnegativity of the function x(s) underlies the in-

equality method, and the improvement over ordinary estimation is due to

the extra freedom this information provides. That this extension to

ordinary least squares is capable of yielding useful results is perhaps

most easily illustrated by unfolding a pulse-height distribution obtained

with the organic neutron scintillation spectrometer whose response is
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shown in Figs. 6 and 7. The window functions used were Gaussian with a

relative full width at half maximum (FWHM) of 20% in energy. The pulse-

height distribution (after combining channels into larger bins) is shown

in Fig. i0, and the unfolded "spectrum" is shown in Fig. ii. The in-

terpretation of the intervals on Fig. ii is that they are confidence

intervals for the response of Gaussian-shaped band-pass filters (or

windows) centered at the indicated energy.

Narrowest possible confidence limits

It has been shown that if x(s) _ O, a confidence interval can be

obtained for any quantity of the form

P

¢ = Jw(s) x(s) ds (3.3)

provided that a pair of estimable functions can be found which brackets

w(s). The estimable functions must satisfy

and

m

K.(s)> w(s)
1 1

i=l

(3.4.l)

m

io <K.(s): w(s) .
l l

i=l

(3.4.2)

Although a set of upper and lower confidence limits for different window

functions is of interest_ for brevity just one such window function

w(s) and just the upper limit of the confidence interval will be consid-

ered. In order to find the lower limit of the confidence intervals_ the

upper limit of the interval is found for -w(s)_ which will be the lower
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limit for w(s) with reversed sign. Thus the following methods could be

applied to a double set of window functions_ one set taken with the

original sign, and the other with reversed sign.

From Eqs. (3.2), (2.10), (2.13), and (2.19), the upper limit of

the confidence interval given by the upper sensitivity function is given

by

with

j l$ uT{+K uTSu, (3.5.1)

_ u. K.(s) _= w(s) . (3.5.2)
1 1

i=l

However, since more than one coefficient of combination vector u can

generally be found which will satisfy the constraint, among all the

possible coefficient vectors u = (ul3 us, ... Um) the u* which results

in the least upper-confidence-interval limit will be be chosen. In this

selection process a compromise must be made between two conflicting

desires: to approximate the window w(s) as closely as possible by the

sensitivity function and at the same time keep the coefficients small,

m

since then _ u.2 _.2 will be small. The selection problem may be re-
/, l 1

i=l

phrased as the following extremal problem:

Find a coefficient vector u* = (u_, u_, ... u_) which minimizes

m m m

Z u.T. + K u.e _.2 with U. (S) >W(S) •
1 1 l 1 l

i=l i=l i=l

(3.6 .i)
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More compactly, this problem maybe written as

i= k 1 1

In order to get this into a convenient form for numerical solution_

it must first be reduced to a finite dimensional problem. Fortunately,

the inequality method provides a natural solution to this problem_ which

is discussed in the following section.

k
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4. REDUCTIONTO FINITE DIMENSION

In the preceding section the constrained estimation problem was

formulated as an extremal problem in terms of the m-dimensional vectors

u and b. Only the constraint relation

m

Z uK(s) w(s) (4.1)ll

i=l

involved the continuous variable s. Before the edges of the confidence

interval can be computed 3 a way must be found to keep the continuous

constraint satisfied by only a finite computational method.

The simplest solution is to replace the window function w(s) by

an upper linear approximation with

w(s) w(s) , (4.2)

as shown in Fig. 123 and to replace each of the response functions

K_(s)3 for i = i_ 23 .°. m_ by a pair of linear approximations which

bracket it from above and below:

Ki(s) 1° <= K.(s) <= (4.3)l Ki(s)UP '

as shown in Fig. 13. Then an inequality can be established in terms of

these linear approximations which need only hold at the end points

s1_ s23 .°. sn of the linear segments to establish afortiori that Eq.

(4.1) holds for the original continuous functions at all s. First it

is observed that
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Fig. 12. Replacement of the continuous window function w(s) by an

upper approximation w(s)UP consisting of a finite number of linear seg-

ments with end points sz_ s2_ ... sn.
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-46-

u i Ki(s)UP = u.K.(s)l1
i=l i=l

(4.4)

where the upper term in brackets is to be summed if u. is +, and the
l

lower term if u. is -. Then with the additional requirement that
l

I  I l °l>wlsl  
ui Ki (s )up =

i=l

(4._)

the following series of inequalities (illustrated in Fig. 14) is implied:

m m [ s)l°]uiKi(s) > _ ui Ki( > >
: Ki(s)UP : w(s) up : w(s) .

i=l i=l

(4.6)

Equation (4.5) can be written in more convenient form if the co-

+

efficient vector u is decomposed into two parts: u with + sign and

+ +> ->
u- with - sign, so that u = u - u- with u = 0 and u = O. Then Eq.

(4.5) becomes

In

i=l

w(s) _p . (_.T)

Now, letting

_ : Ki(sj)l°,

np
K..mj= Ki(sj )up

up ( )upw = w,s_
0 J



-47-

m

T. u; K. (s)
/=t

ORNL-DWG 64-995

w(s

Fig. 14. The inequalities implied by Eqs. (4.2) and (4.3).
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the finite-dimensional constraint can be written in matrix notation as

T T T

+ KlO - KuP_u _ u = wup . (4.8)

In computation, the required functions w(s) up, Ki(s)l° , and

Ki(s) up need to be constructed for i = i, 2, ... m. Then it is required

only that the inequality Eq. (4.7) hold at the ends of the linear seg-

ments where s = sl, s2, ... sn. This inequality is weaker than Eq. (4.1)

and its use means that the least upper-confidence-interval edge may be

somewhat greater than would result from use of the continuous inequality.

But since a wider confidence interval will result 3 this error is conser-

vative and the confidence intervals can still be guaranteed. The number

of linear segments that must be used depends upon the shape of the func-

tions, the uncertainty of b = (bi, b2_ ... bm) , and the amount of ineffi-

ciency one is willing to tolerate in order to reduce the number of com-

parison points. For example, if the functions were exactly piecewise

linear, then the continuous constraints can be exactly replaced by the

finite constraints without any loss in efficiency. Also, there is not

much point in making the overall confidence interval very efficient if

most of the width is due to the standard deviation term in Eqs. (3.6)

and the linear approximation causes only a small increase in width rela-

tive to the continuous constraint. A practical criterion for the number

of segments is to choose a number that will make the increase in error

due to the finite approximation about half as large as the standard

deviation part of the width. This number is easy to determine for a

particular class of problems by running a few test cases with different

choices.
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A more efficient scheme is to use a piecewise parabolic approxi-

mation instead of a piecewise linear approximation. The comparison

points can be taken much further apart if the functions w(s) and Ki(s )

are to be approximated within a specified amount. But the inequality

condition between the parabolic approximations must be formulated in

such a way that in addition to there being inequality at the end points

of each segment there is also inequality between them.

A sufficient condition to maintain inequality between parabolas

' s") is to require the inequalitiespl(s) and p2(s) over the interval (s ,

and

p_(s)>= p2(s'),

p_(s)_ p2(s)•

(4.9.1)

(4 -9.2)

d2 d2
-- p_(s) _ -- p2(s) .
ds 2 ds 2

(4.9.3)

Then the difference, Pl(S) - p2(s), cannot have a zero crossing between

s' and s".

The parabolic approximation inequality can be put in the same

form as Eq. (4.8) by the use of the central difference formula for the

second derivative:

--p(s) : s' p(s,)- 2p + p(s') (4.1o)
ds 2 - s ' 2 "

The points of comparison s1_ ss_ ... sn are selected at the end points

of the parabolic segments, and s2, s4, ... Sn_ _ at the midpoints. Then

the required inequality has the form

+T KI ° T > Tu D - u- Kup D = wup D , (4.li)
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where D is a matrix whose odd-numbered columns correspond to the end

points of the approximation segments and whose even-numbered columns

are proportional to the finite operator for the second derivative within

each segment:

D

i i

-2

I i i

-2

i i i

-2

i

Thus in terms of the modified matrices (_°D) and (KUPD) and the

T

modified vector _up D), the inequality Eq. (4.11) has the same form

as Eq. (4.8) for the piecewise linear approximation. However, it is

more difficult to obtain the modified forms, since first the required

piecewise parabolic functions w(s) up, Ki(s) I° and Ki_s.up(] must be con-

structed_ then be evaluated at sl, s2, ... Sn_ and finally be transformed

by postmultiplying by D.

In conclusion_ there is no requirement for the end points of the

approximation segments to be evenly spaced or for two contiguous seg-

ments to share the same end point• In fact_ it is often convenient to

take some of the spacings as zero to handle abrupt discontinuities in the

response functions (as might result from x-ray absorption edges). Figure

15 illustrates an upper linear and an upper parabolic approximation for

two different functions.
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given:

wanted:

5- PROGRAMMING FORMULATION

In Chapter 2 the unfolding problem was posed in the following form:

Ki(s ) x(s) ds = b. + e.i i

2

var(_) : S :

i = i, 2, ... m

confidence interval for q0 : [ w(s) x(s) ds

where K.(s) is the response function relating the response b. to the un-
1 1

known spectrum x(s), and e. is the random erro_ in the experimentally
1

A

observed response vector b. It is assumed that the variance-covarianee

A
matrix S of b _s known. The experimenter may specify the window function

w(s ). Generally, a "solution" consists of a large number of confidence

intervals for different window functions•

In Chapter 3 it was shown that if x(s)>- 0 the confidence interval

[$io sup] could be determined provided that w(s) could be bracketed be-

tween two linear combinations of the response functions• Then the deter-

mination of the narrowest possible confidence interval was posed as a

pair of extremal problems_ with the upper confidence limit given by

m

T w(s }
i=l

(5.2)
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Finally, in Chapter 4 it was shown that the continuous inequality

constraint can be replaced by a finite constraint:

+T _o T Tu - u- Kup >-wup , (5.3)

where 2 ° and Kup are n-by-m matrices and wup is an n-dimensional vector.

These are found by evaluating upper and lower piecewise approximations to

Ki(s ) and w(s) at points of comparison, sl, ss, ... sn. Thus the finite

extremal problem for determination of the upper-confidence limit is

{u_up = minu T_ + g u Su T T T)u + KIo - KuP >- u = up • (5.4)

As was mentioned before, the determination of the lower-confidence limit

_io has the same form as the determination of _up if it is observed that

is the same as the upper limit of the function ¢ = _-w(s) x(s) ds._%1o

lo _up _$1o.Thus to obtain _io up is replaced with -w , and with

The solution for Sup of Eq. (5.4) is a problem in mathematical

programming, the minimization of a given function under certain inequality

constraints. Equation (5.4) as it stands is nonlinear in the function to

be minimized, with a linear inequality constraint. No analytic solution

to Eq. (5.4) can be given, but several computational methods are known

for solving this problem to any required degree of accuracy (44). How-

ever, a simple observation allows the problem to be expressed as a

"quadratic programming problem" with a quadratic form to be minimized,

and many methods are known for its exact solution (apart from arithmetic

errors) in a finite number of computational steps (45).
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If Sup from Eq. (5.4) is considered to be a function of K, then

as K is varied_ the point (7,_) will move along the boundary of the set

of values of 7 = uT_ and _ = ,_u_Su3 _ which are feasible with respect

to the constraints_ as illustrated in Fig. 16. If the K u Su term

were to be replaced with _(uTsu)_ the problem would be one of standard

quadratic programming. If the path of the point (7,_ 2) in the quadratic

problem is considered 3 it is seen that there is a l-to-i correspondence

between extreme points on the set of feasible (7_) for the two prob-

lems. Thus if the quadratic programming problem is solved for all

values of _, the solution to Eq. (5.4) is given simply by

$up(g) = min [ ]r(_) + K_(_) . (5.5)

Although other methods for obtaining the desired confidence interval

are discussed in later sections_ the entire process of obtaining con-

fidence intervals using constrained estimation can now be outlined.

A flow diagram of the numerical calculation is shown in Fig. 17.

The computations shown in Fig. 17 could be carried out by an

existing quadratic programming code (45)_ but a rather inefficient code

would result_ because approximately 5.q.n-(n+m) 2 floating-point opera-

tions (mainly multiplication and subtraction) are required in order to

find both upper- and lower-confidence-interval edges for q windows.

Thus in a problem of moderate magnitude_ such as the one shown in Figs.

8 and 9_ where q = 80, n = 40, and m = 70, about 109 operations are re-

quired_ necessitating several hours of time on a modern computer. The

speed can be improved considerably by using the result from the pre-

vious edge as a starting point for the next one_ instead of solving a
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Fig. 16. The solution to both Eq. (5,4) and Eq. (5.5) trace out the
path of (7_) on the bo_daz7 of the feasible set as K or # is varied,
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Fig. 17. Steps in the numerical calculation of the constrained

confidence intervals (_lo,_up).
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separate programming problem for each confidence interval edge. However_

rather than pursue the exact quadratic programming formulation_ we have

developed two different approximations_ which require only about 20-q'n'm

floating-point operations and thus enable the problem mentioned above to

be solved in a few minutes.
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6. LINEAR PROG_G APPROXIMATION

In order to reduce the amount of computation required in solving

the unfolding problem_ the nonlinear programming problem can be replaced

by a linear one. This results in a simpler and faster computer code but

imposes the penalty of the confidence intervals not being as narrow as

possible. The efficiency of the linear programming code is discussed

later.

i
The standard deviation term

ui2 2Su = _i

i=l

in the constrained estimation nonlinear programming formulation can be

............. _ _7_a_ _n_m (Ten_th] of the coefficient vector u

in the metric of S. In order to obtain a linear programming problem in

+
u and u _ the Euclidean norm can be replaced with the sum of absolute

v_71_ worm. These two are related by the inequality

m
i=l i=l

, (6.1)

where the equality sign holds if and only if just one component of the

summation is nonzero.

Here the variance matrix S is assumed to be diagonal_ with

Sii = °i and Sij = 0 (i _ j). By a suitable linear orthogonal transform_

tion_ an arbitrary S may be put in this form.
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NowEq. (5.4) maybe put into the linear form:

cup = rain ( u_ +Ku lulTa u+TKl° - u-TKuP-_wupT_ " (6.2)

In order to get Eq. (6.2) into a more convenient form for computation,
÷

the objective function is written explicitly in terms of u and u and

the inequality in the constraint is changed into an equality by sub-

tracting a nonnegative "slack" vector from the left-hand side of the

constraint:

_up min <(u+ u-)TA T: - b + _(+ + u-) o + o -_up v :

(6.3)

with u+ _ O, u- _ 0, and v a O. The elements of the slack vector v may

be interpreted as the difference between the piecewise-approximation

sensitivity function and window function at the comparison points.

÷
If the three vectors u u , and v are collected into one combined

vector (u+ u- v), Eq. (6.3) can be rewritten as

T_up = rain (u+ u-v)

0

(u u v) -Kup : wup

-I

with _--u- -_ O.
k V

Equation (6.4) is now in the correct form for solution by linear

programming. Since there are many adequate references to linear program-

ming methods, the reader is referred to these and just the details of
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the Simplex algorithm (44,46--48], the best known of the linear program-

ming methods_ are sketched. Computationally_ the Simplex method examines

a vertex of the set of those feasible (u+ u- v) which will satisfy the

linear inequality constraints. If this point does not yield the mini-

mumvalue desired_ the algorithm proceeds to an adjacent vertex at which

the function is smaller (or the sameif no adjacent vertex has a smaller

value). Eventually the Simplex method will terminate with a solution

in a finite number of steps or will show that the solution is unbounded.

The process by which the numerical computation is done is very similar

to the ordinary Gauss elimination commonlyused in matrix inversion. The

difference consists in the order in which the columns to be eliminated

are selected.

Cycling is a phenomenonthat occurs in linear programmingprob-

lems whenat somestage all adjacent vertices have the samevalue. It

is then possible to move from one vertex to another without decreasing

the desired function_ and eventually it is possible to comeback to the

starting vertex. It was necessary to use one of several methods (44,

46-48) knownfor obtaining a solution in these cases. Linear programming

codes have been written for most computers. Gass has reviewed the codes

which were available up to about 1960 (49). A flow diagram for the

linear programming solution to the unfolding problem is given in Fig. 18_

which showsthat a separate linear programmingproblem is solved for

each upper and lower edge of the confidence intervals for each window.

Typicall_ from n to 3n Gausseliminations are required to solve just

one minimization problem. EachGauss elimination involves approximately

n(2n + m) floating-point operations; thus a more economical procedure
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u-TKIo_>_ w loT}

v

Fig. 18. Flow diagram for solution of unfolding problem by linear

programming.
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is desirable. A considerable reduction in the number of eliminations

is possible if each new problem is started at the terminal vertex of the

previous problem. Some existing linear programming codes have this

facility.

Efficiency of oomputational method

Let the efficiency be defined

minimum possible width of confidence interval

width of computed confidence interval

If a st_fficiently large number of comparison points is taken_ the

nonlinear programming formulation of Eq. (5.4) would yield an efficiency

of i. But because of the replacement of the Euclidean norm by the sum

of absolute value norm_ the efficiency of the linear programming method

may be less. It is difficult to give an estimate of the efficiency

_cc&uzc it "rnri ...... _S_hlv. de_endin_ uDon the problem. In the

limit of small error_ the efficiency is 1.0_ where any remaining width

is due to the underdetermination of the problem and not to the statisti-

cal errors. The worst possible case gives an efficiency of i/_ , and

leaves much to be desired.

Two techniques are used to increase the efficiency. With one_

although the sum of absolute value norm is used in the minimization_

the final confidence interval edge can be computed by using the

Euclidean norm_ with the coefficient vector u which resulted from the

approximate formulation. The other technique involves taking a Taylor

expansion about the approximately optimal u_ and continuing the minimi-

zation using the linearized "cost function."
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7. DUALITY RELATIONS

Dualism occurs in many different forms. A well-known primal-dual

relationship occurs in the formulation of electric network equations

in terms of voltages around loops_ or in terms of currents into node

points. Either formulation leads to the same physical solution_ and

the results of either can be translated into the other. Yet the two

physically equivalent approaches often differ in their computational

difficulty. Two other familiar dualisms are the particle-wave dualism

of quantum mechanics and the time-domain_ frequency-domain dualism in the

behavior of systems governed by linear differential equations. Aside

from the practical (computational) aspects_ consideration of these primal-

dual relations often yields insight into the problems.

In mathematical programming_ a dualism exists which allows re-

formulation of the standard minimization problem (called the "primal")

with n-unknowns z = (zl, z2, ... Zn) and m constraint relations in

terms of a maximization problem (called the "dual") with m-unknowns

u = (ul, U2, ... urn) and n constraints. The variable u is said to be

the dual of z. In many cases the primal-dual relationship is symmetric_

and either problem can be considered the dual of the other; in other

words_ z is also the dual of u.

The primal-dual relations of mathematical programming take an

especially simple form for linear programming (where the function to

be minimized is a linear function of the unknowns and the constraint
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equations are linear inequalities). Then the primal and dual are the

fo flowing:

min (cTz Az _ b) (7.1.1)primal: ¢ = _ ;p z__O

= max (uT uTA _ ) (7.1.2)dual: Cd u__O b _ cT

The primal-dual theorem of linear programming (closely related to the

famous minimax theorem of Von Neumannin gametheory) states that (6-9)

= '_d " (7.2)P

As a corollary_

T
c z _ cTz* = ¢ = u*T Az* = Cd u*Tb _ uTb (7.3)

where the z* and u* are optimal values which yield the minimum and maxi-

mum of Eqs. (7.1.1) and (7.1.2), and u and z are any feasible solutions

which satisfy the constraints of Eqs. (7.1.1) and (7.1.2). An additional

type of relationship between the primal and dual variables is expressed by

u. - (7._-. l)
z _b.

I

and

z. - . (7.4.2)
j 8c.

J

In other words, ui gives the change in the optimum solution of Eq. (7.1.1)
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or (7.1.2) as b. is varied an infinitesimal amount. If some inequality
l

of Eq. (7.1.1) is "slack" (i.e., the inequality holds), then the corrre-

sponding component of u is zero, since then b. could be varied a small
l

amount without affecting the value of the optimal ¢.

The two basic primal-dual relationships (7.1.1) and (7.1.2) can

be algebraically manipulated to yield a large number of equivalent primal-

dual relations. For example, the primal may be changed from minimization

to maximization by minimizing -cTz instead of cTz. In addition, the

nonnegativity constraint can be removed_ leaving only the linear in-

equality constraint_ by the device discussed in Chapter 4 of expressing

the unrestricted variable (with -oo S z _ +oo) in terms of two nonnega-

+ - + -

tire variables_ z and z , so that z = z - z . The primal is then

expressed in terms of the vector (z+_z -) of double the dimension of z.

Many of the equivalent forms of the primal-dual relation are summarized

Of particular interest for the unfolding problem are the following

special forms:

primal: cup = minu { uTb + lulT_ I uTA _- cT} ; (7.5.1)

dual: cup z__O " "

The primal form (7.5.1) of these two relations is identical to the linear

programming formulation of the unfolding problem in the special case that

IoA = Kup = o and c = wup = w . Without this simplifying assumption,
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the primal-dual relation is the following:

primal: cup : minu <u% + [ulT_ u+TKlo T T )- u- Kup __ wup ; (7.6.1)

= max <cTz Kl°z- b < a, -_ __ KUPz- b} (7.6.2)dual: _up z__0 =

tion.

The simplified forms (7.5.1) and (7.5.2) have a simple inte_reta-

Equation (7.5.1) has already been discussed in terms of finding

a minimum-variance upper estimate, with the nonnegativity of z being

a necessary condition, although the variable z does not occur anywhere

in Eq. (7.5.1). Equation (7.5.2), however, explicitly involves the

nonnegativity of z. The upper-confidence-interval edge is given by Eq.

(7.5.2) as the largest possible value that ¢ = cTz can attain for a non-

negative z which is consistent with the experimental data such that the

- Similarly, themagnitude of each residual (Az b) i is as small as oi"

lower-confidence-interval edge leads to a problem such that ¢ takes the

smallest possible value consistent with the small residuals and with the

nonnegativity of z.

In the general mathematical programming problem (where both the

function to be minimized and the constraints may be nonlinear); the

primal-dual relation is more complicated. Wolfe (51) has given the

following form:

primal: minimize f(z) subject to gi(z) __ O, i = 1,2,...,m ; (7.7.1)
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dual:

m

_subject to Vf(z) = i=l_' ui X7gi(z)_ and u __ 0
, (7.7.2)

where Vf(z) denotes the gradient of f(z). Wolfe's principal theorem is

the following: If z* solves the primal problem_ then there exists u* so

that (z*_u*) solves the dual problem_ and the extrema are equal. This

immediately reduces to Eq. (7.1) for the linear programming case. Of

more interest is that Wolfe's theorem can be used to find the primal-

dual relation for the nonlinear programming formulation of the unfolding

problem. With A = KI° = KuP_ the primal-dual relation is:

primal: _up = min_u_u + K'juTsu I uTA -_ J_ J (7.8.1)

(7.8.2)

Thus it is seen that the upper-confidence-interval edge is given by the

T
maximum possible value that ¢ = w z can attain for a nonnegative z and a

specified value of the error sum of squares. The connection between

ordinary least-squares estimation and constrained estimation can now be

shown; this will determine the value of K which yields a specified con-

fidence level.

io TIn Chapter 2 the confidence interval [¢ _up] for ¢ = w z is

given by
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sl° Jw v(: w z - K z) w , (7.9.1)

T. _w•Sup : w z + /< V(z) w , (7.9.2)

where K is related to the confidence level according to Eq. (2.10). The

same confidence interval edges can be obtained as the solution to the

extremal problem:

= z (Az - %)%-_ (A_ - %) _ n_ + _ (7.10.1)
Z --

}= z (Az - b)TS-1 (Az - b) -_ K2 + _2
Z

, (7.10.2)

where _a is the
A A

rain [(Az - b)Ts -I (Az - b)].
Z

This extremal problem can

be interpreted geometrically in terms of the confidence ellipsoid

(Az - %)Ts-i (Az - %) shown in Fig. 19. The extremal values of ¢ cor-

respond to the points of contact with the two planes of support orthog-

onal to the direction of the window vector w. The values of z at these

io

two points of contact are the extremal vectors zup and z _ given by

A K
_up= z + v(z) w

_w%(%) w

(7.11.i)

and

^lo I" K
z = z V(z) w (7.11.2)

Jw%(S)w
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Fig. 19. The confidence ellipsoid for ordinary linear estimation
(shown in two dimensions). The edges of the confidence interval for a

function ¢ = wTx are given by the value of ¢ at point_ a and b.
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and are the two values of z which give the largest and smallest values

of wTz consistent with (Az -b)TS-I (As - b) _ Ke + _2. That this

extremal problem does indeed give the correct confidence interval can be

verified by direct solution of the extremal problem by means of Lagrange

multipliers. A dual extremal problem can be formulated which yields the

same confidence interval as Eqs. (7.10):

cuP = min _uTb +JK2 + _2 JuTSu [ uTA = wT_;u
(7.12.1)

J$1o = maXu <u_-jK2 + _2 : wT) . (7.12.2)

In this classical dual, the constraint is the unbiased condition_ and the

"objective function" is the upper estimate !jK2 + _2 times the standard

deviation of the estimate.

With two exceptions these two classical extremal formulations of

ordinary estimation are identical to the inequality primal-dual formula-

tion for constrained estimation given in Eqs. (7.8.1) and (7.8.2): the

primal problem is not restricted to nonnegative z_ and the dual is an

equality rather than an inequality. Thus for this problem (as well as

for linear programming) relaxing the nonnegativity constraint in the

primal corresponds to replacing the inequality in the unrestricted dual

by an equality.

The desired connection with ordinary estimation can now be estab-

lished so that the value of K in Eqs. (7.8) neccessary to give a speci-

fied confidence level can be specified.
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If in the discrete least-squares problem it is known a priori that

z _ O_ then the confidence level resulting from solution of the extremal

problems (7.10.1) and (7.10.2) will not be reduced if only z _ 0 is con-

sidered. Thus solution of

%up = max {wTzz-_0 i (Az -_b)Ts-I (Az - _) < Ke +_e}- (7.13.1)

and

z _O z (Az -%) K +

will yield a confidence interval [$io, Sup] such that

(7.13.2)

Pr( $I° -_ ¢ -_ Sup ) : _ • (7.14)

The geometrical interpretation of the constrained estimation is shown in

'7 ..........Fig. 20. The conli_ence mn_erv_ _,uw io _iv_ Lj .... _cints ..... _÷

of the two support planes of the intersection of the ordinary confidence

ellipsoid with the positive region.

Comparison of Fig. 19 with Fig. 20 will show why the nonnegativity

restriction yields an improved confidence interval. Furthermore_ the

ordinary estimation method yields a trivial (infinite width) confidence

interval if the confidence ellipse is degenerate (singular least-squares

matrix_ or n > m) unless w is orthogonal to all degenerate axes. But

with constrained estimation_ a nontrivial confidence interval is obtained

even if the ellipsoid is degenerate_ provided that the intersection of

the ellipsoid with the positive orthant (generalization of quadrant and

octant to an arbitrary number of dimensions) is finite.
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Fig. 20. The confidence region for constrained estimation (shown

in two dimensions). The edges of the confidence interval for a function

¢ = wTx are given by the value of ¢ at points a and b. The shaded area

is the intersection of the ellipsoid and the p_sitiv_ region.
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The proper interpretation of K' in Eqs. (7.8) necessary to yield

a confidence interval is

" ,,]g,2 = g2 + _2 = K2 + min (Az - (Az - b) . (7.15)
z

Note that the minimization is taken over all z and not just nonnegative

z. Note also that if n __m, then _ is always zero. This has a peculiar

consequence: it is possible sometimes that a confidence interval does

not exist. Geometrically, this situation arises when the ordinary con-

fidence ellipse does not have any point in common with the positive

orthant. This is possible statistically, but of course with a prob-

ability which is less than (i -_). If _ is increased sufficiently, the

ordinary confidence ellipse will eventually intersect the positive

orthant, but it is not "fair" to alter the confidence level in order to

obtain a solution. If this is done, the probability interpretation of

the confidence interval breaks down. Of course, if the observation oi

the response vector b were repeated, a valid interval would be obtained

for any prespecified _ in a fraction of the experiments at least as

large as _ in the long run.

This possible inconsistency is a serious conceptual problem since

some experiments are so costly in time and equipment that it would be

impracticable to repeat the experiment if no confidence interval is ob-

tained on the first try. One solution to this dilemma is to replace the

constraint (Az -%)Ts-I (Az b) __ K2 by the weaker constraint

(Az - %)Ts-_ (Az - %) _-K2 + _,2 where

_,2 = min[(AZz__0 - %)Ts-I (Az - %)] . (7.16)
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Then the resulting ellipsoid will always intersect the positive orthant.

The confidence interval, however, will be weaker than that of Eq. (7.14),

so that

(7.17)

holds with inequality rather than with equality. In many cases_ however,

a weak confidence interval which always exists is preferable to a stronger

confidence interval which may occasionally fail to exist. If a stronger

confidence interval is demanded_ then it must be expected that some

experiments will be rejected [not exceeding (I - _) of the total number

in the long run].
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8. ERRORS IN THE RESPONSE MATRIX

Thus far it has been assumed that the only statistical errors are

the errors in observing the response vector b = (bl, b2, ..., bm).

However, in most experimental problems the response functions K.(s) are
1

known only with some statistical uncertainty. Sometimes, the functional

dependence of K.(s) on i and s is known from physical considerations, and
l

certain parameters are estimated by comparison of experimental results

with known calibration spectra. In other cases it may be possible to

experimentally measure Ki(s ) for certain values of s for which there are

available sources of discrete s.

Since it was shown in Chapter 4 that the continuous problem can

be reduced to a finite problem (with a slight weakening of the confidence

interval)_ it suffices to discuss the discrete problem in terms of the

response matrices _up and K±U where the elements of these matrmces may u_

subject to error. In ordinary least-squares estimation, where A = K up =

K I°, it is fairly easy to evaluate the effect of errors in the matrix

T
elements on the confidence interval for a function ¢ = w x. If the

normal equations are not singular, the matrix (ATs-IA)-i can be expanded

in terms of the error dAby means of the approximation

(A - B)-l = II + (A-IB) + (A-IB)a + "''I A-l

A -l + A-IB A -l if B << A . (8.1)

But if the normal equations are underdetermined, the required inverse

matrix does not exist. This means that any estimable function will have



-78-

an infinite variance if any column which enters into the combination

for the sensitivity function has an error.

Thus our inequality approach for the unfolding problem, which is

A

generally underdetermined, must be extended. If the error in K.. is
mj

known (with certainty) to be less in magnitude than Zij , it can be taken

into account by enlarging the constraint set of (7.6.1) to

z) - u- ( up+ z) wup . (8.2)

This in effect provides a safety margin in the fit of the window function

by a combination of response functions, so that even if each response

function is in error by the maximum amount, the upper sensitivity func-

tion will be greater than w (and similarly for the lower sensitivity

function).

If the errors in _up and K I° have a random distribution, the

constraint set as above could still be enlarged by KZ, where Z is now a

matrix whose elements are _(Kij) , and K depends upon the confidence level

desired. But this would possibly lead to a serious overestimate of the

error due to the matrix, since any random cancellation of errors would

be ignored.

A more satisfactory method for statistical errors in K is to make

the approximation that the errors are much smaller than the matrix

elements and to calculate the change in ¢ due to a small change in K.

Then the overall confidence error can be obtained by averaging over the

A

statistical distribution of the errors in K and b. However_ if the error

calculation is deferred until the programming problems have been solved,

a confidence interval which is too large will be obtained_ since the
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coefficients of combination_ u, will not be optimized with respect to

the combined matrix and response vector errors. Therefore the procedure

wanted is one which incorporates the matrix errors into the programming

problem before the numerical solution that will yield the optimal con-

fidence interval.

The key to this problem is the interpretation of the dual variable

z as the change in the objective function for small variations in b.
1

given by Eq. (7.4.1). More generally, the dual variable z. is the change
J

in objective function ¢ which results from the ith constraint becoming

unsatisfied by a small amount. Since the matrix K always enters the

dual problem in combination with the response vector b in the form

(Kz - b)_ the constraints may become unsatisfied if b. changes or if
1

A

(Kz)i changes. The net change in the objective function is

d_= J(_z - db) , (8.3)

where u is the vector of coefficients of combination in the unfolding

problem and z is the dual of u.

Chapter 3 shows how to obtain the optimal confidence interval if

only b is in error. Now Eq. (8.3) implies that the matrix errors dKz can

be included if its contribution in the metric is included:

s : _(_ - b)(_ - b)_ + Z(_ - _:) zz_(_- x) _ . (8._)

A

Then if the distribution of errors in b and K is known, the metric S

can be calculated.

Two problems still remain. First the dual solution vector z is

not generally known until after the problem is solved_ since it emerges
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as part of the computation. Second_since z is different for both the

upper and lower edge of every confidence interval_ the unfolding problem

should nowbe solved anew in a different metric_ twice for each confidence

interval. Thus the computation would be impracticable except for small

or very important problems.

If the final confidence interval is computedfrom Eq. (8.3), how-

ever_ a safe confidence interval will still be achieved. At first_ z can

be assigned arbitrarily or set equal to zero. The entire calculation

could be repeated by taking a new z for the metric as the average of all

the extremal dual vectors obtained on the first calculation. Usually,

however_ somephysical considerations will suggest a first approximation

for z (for example, see Chapter 9). These procedures appear adequate

except for serious matrix errors, where the small error assumption is

not valid.
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9. MODIFIEDLEAST-SQUARESAPPROXIMATION

As was shown_the continuous unfolding problem could be formulated

as an extremal problem in a finite number of unknowns,u = (Ul, ... urn),

with a continuous constraint inequality. Thenby meansof upper and

lower piecewise approximations to the response function and window func-

tion_ it was possible to obtain a finite constraint inequality. Since

the true spectrum x(s) never had to appear in the resulting programming

formulation, it was possible to proceed directly from the experimental

data to the desired results without any consideration of x(s). This

fortunate circumstance depended, however, upon a priori knowledge that

x(s) __0. It was shownalso that there is a nonnegative vector

z = (zl, ... Zn) which is dual to u. The unfolding problem can be

formulated in terms of this vector, which serves in analyzing errors

due to the response matrix and_ in general_ also serves in lieu of an

estimate of the spectrum itself whenever x(s) is needed in the conven-

tional unconstrained estimation.

The starting point for the modified least-squares problem is_ as

always_ the continuous problem:

given:

7 i(s) x(s) as:b i+ei, x(s) 0 ,

e is normally distributed with known variance matrix S; > (9.1)

wanted:

confidence interval I_l°_ _uP 1 for _ = 7 w( s) x( s) ds .
J
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First, it is assumed that Ki(s) and w(s) can be replaced by a piecewise

linear or parabolic approximation K. (s) appr°x and w(s) appr°x. Then it
i

suffices to consider only values of these approximate functions at the

comparison points s1_ se_ ... sn. These values constitute the matrix

Kij = Ki(sj) and the vector wj = w(sj). So far the only difference in

assumptions between the modified least-squares method and the general

method is that instead of an upper and lower piecewise approximation

being taken for K.(s) and w(s) a single piecewise approximation is
m

assumed to be sufficient. In practice_ a discrepancy of the order of l_o

between the piecewise approximations and the actual functions is often

unimportant if the response vector components have comparable errors.

The dual finite programming problem which yields the confidence

interval is then

= z__O z - - _

I= z__0 Z (m -%)_ s-_(Kz-%) __K_) . (9.2)

Now the solution to this dual problem is the solution to the following

constrained estimation problem which serves as the point of departure

for the modified least-squares method:
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given:

Kz=b+e

z__O_

e is normally distributed with known variance matrix S;

want ed:

confidence interval _up for ¢ = w z

An effort has been made up to now to avoid the misleading (though

valid) suggestion that z is a discrete approximation to the continuous

spectrum x(s). But this implication emerges strongly now from Eq. (9-3).

It is more desirable to think of Eq. (9.3) as equivalent to the continu-

ous problem with response functions Ki(s) appr°x and window function

w(s) appr°x. This is a different motivation from the usual one of re-

_i_11_ _ _...._I ....._ _ _ _÷ nf _rn×imatin_ eauations. The

assumptions which underlie Eq. (9.3) apply to the response function and

window function and not to the spectrum x(s)_ which is completely arbi-

trary except for the nonnegativity requirement that x(s) _ 0.

Primal formulation

As in the minimum variance approach to ordinary estimation_ a

combination of response functions_ uTK_ will be found which approximates

the desired windowwT_ but it will not be required that the combination

uTK agree exactly with the window for each component. Then the overall

confidence interval must take the discrepancy (or "slop") between uTK

and wT into account. In ordinary estimation_ it is impossible to

evaluate the error due to this discrepancy (hence the necessity for the
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unbiased condition)_ but in constrained estimation, the a priori non-

negativity information can be used to find an interval [zminj, zmaxj]

for zj. Then an upper bound for the error can be found.

A lower bound_ zminj, of zero for zj is given immediately from

z _ O. But if K _ O_ an upper bound can also be obtained by the follow-

ing simple method. First notice that the constraint inequality of Eq.

(9.2) implies the weaker inequality

- < K (9.4 l)maxi i IKz bl i _ .- .

or

_sKa. + b. for all i . (9.4.2)(_z)i _

Then

K.. z. _-Ka. + b.
ij j l l

i = l_ 2_ ... m

j = i, 2, ... n (9.5)

since only nonnegative terms have been dropped. Since Eq. (9.5) must

hold for any i_ that i which gives the least upper bound is picked:

min I(b i Kai)/Kij 1zmax. = + i = i, m (9.6)
J i _ ....

The geometrical interpretation of this bound is illustrated in Fig. 21.

Equation (9.2) implies that z lies in an elliptical region (possibly

degenerate). The inequality of Eqs. (9.4) means that the elliptical

region has been replaced with a box-shaped region which encloses it.
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Then the bound implied by Eq. (9.6) is given by the smallest intersec-

tion of the edges of this diamond with z. axes.
J

The weakness of this interval can be partly overcome by including

in the modified least-squares procedure the calculation of a confidence

interval [zminj, zmaxj] in sddition to the confidence intervals for ¢.

Then the improved bounds may be used for a second iteration.

In order to utilize both the upper and lower bo_md for z. (in
J

the anticipation that a nonzero lower bound for z. may be obtained on
J

the first iteration)_ the estimation problem is expressed in terms of

(z - d), where

d = 0.5 (zmax + zmin) , (9.7)

so that

- 0.5 (zmax - zmin) __ (z - d) __ 0.5 (zmax - zmin) . (9.8)

Then the maximum uncertainty in (z - d) is only half that in z since the

expansion is about the center of the interval.

Now ¢ can be expressed as

= J(z-d) +wTa . (9.9)

T
When the unbiased condition w = uTK is replaced by

(9.lO)w = uTK + - ,

where the quantity in parentheses is the discrepancy between the combina-

tion of response functions and the desired window vector_ Eq. (9.9) becomes
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= 2x(z - d)+(J- 2_)(z - _)+ wT_ ; (9.11)

and since Kz = b_

= J_ + J(b - _d)+ (wT - JK)(z - d) (9.12)

Now, because there are bounds for (z - d) from Eq. (9.8),

rain [wTd + uT(b - Kd) + (wT - uTK)(z - d)Iz-d

 maXIw 1-z-a d+_(b -Kd) + (w_-uT_)(z- a) , (9.13)

where -0.5 (zmax - zmin) S (z - d) _ 0.5 (zmax - zmin).

Since the maximization and minization is only over (z - d), which

is bounded by Eq. (9.8),

T ]+ (z - d)min
wTd + uT(b - Kd) + wT - u K _ (z d)max

T ]+ (z - a)max_a + J(b - Kd)+ w_ - _
- (z - d)min

, (9.14)

where again the convention is used that the upper elements are to be used

if the sign of the bracket is ÷_ and the lower elements if the sign of

the bracket is - .
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Finally, the confidence interval [$Io, sup] for ¢ is obtained

A

from Eq. (9.14) by taking into account the variance of ¢ due to the

errors in b. Since var(uTb) = uTSu,

= T ' [w T ] + (z - d)maxSup u(b -Kd) + - uTK
- (z - d)min

= - K Su , (9.15)
$1o wTd+ u (b - Kd) + w - uT_ - (z - d)max

where K depends upon the confidence level desired. The computational

problem to be solved is the determination of the coefficient vector u so

that the confidence interval will be as narrow as possible. Thus it

will be desired to minimize the variance term and at the same time keep

the errors due to the discrepancy [wT - uTK] between the combination of

response functions and the desired window as small as possible.

In order to obtain a simple solution, the quantity to be minimized

is taken to be

= • uTsu + (wT - uTK) Dm(w T - uTK) T (9.16)

where D is a diagonal matrix with elements D.. = 0.5 (zmax. - zmin.).
JJ J J

The first term in Eq. (9.16) is just the variance of the estimate.

The relation of the second term to the estimators in Eq. (9.15) depends

upon the following inequalities:

n

j=l

n (w T - uTK) D2(w T _ uTK) T . (9.17)
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The first equality holds if and only if just one component of (wT - uTK)

is nonzero. The second equality holds if all components of (wT - uTK)

are equal. Although the value of • used in Eq. (9.16) could be selected

to yield the minimum-width confidence interval, it is fairly complicated

to find the optimal value, and we consider _ an empirical constant.

Fortunately, the width of the confidence interval is not very sensitive

to T. A value of • from about i/n to about i seemed to be the best in

most cases tried.

In order to find u which minimizes Eq. (9.16), d_/du, is set equal
J

to 0 for each component and the resulting set of equations is solved.

This results in

T w_D2_(_S+ _ D2_T)-_u = • (9.18)

As is always the case, the method for finding u also has a dual.

And as is almost always the case, the dual has an interesting algebriac

and geometric interpretation which clarifies the problem. The dual form

is

: - - + _(z d)TD-2(z d) --K'2
z

(9.19)

where

( _ A)]K,e = min Kz - b) T S-l(Kz - b + K2 (9.20)
z

and K is given by Eq. (2.10). In this form, the problem is identical
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to ordinary least squares except for the extra term (z - d)T D-2(z - d).

The behavior of this term is illustrated in Fig. 22. It is seen that

the addition of this term tends to constrain z to the a priori region

zmin _ z _ zmax. In fact_ if the extremal problem could be solved for a

p sufficiently larger than 2 (as illustrated in Fig. 22 by the solid

curve)_ then this would be a exact solution to the quadratic programming

problem. From this point of view, the modified least-squares method

considers that the nonnegativity constraint z _ 0 is equivalent to

0 _ z _ zmax_ where zmax is so large that the constraint is effective

only near z = 0. Then in the modified least-squares method, the "box"-

shaped region 0 _ z _ zmax is replaced by an elliptical-shaped region

which approximates the box. Then the confidence interval is determined

by the combination of the ordinary confidence ellipsoid (possibly

degenerate) and the new constraint ellipsoid.

To see that the solution of the dual in Eq. (9.19) is the same as

the primal from Eq. (9.18), it is noted that

%-- (KTs-_K+ _ D2)-_ (KTS-%+ D2d)

is the center of the composite ellipsoid corresponding to the quadratic

form

(1<z-%)_ s-_(x_-%) + _(__ d)T i)-_(z_ d) ,

whose characteristic matrix is
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absolute value term is raised to a higher power than 2.
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Then the solution to the estimation problem is

j up JJv
: = W Zo + T W .

For comparison, the primal solution from Eq. (9.18) and the dual solution

from Eq. (9.19) are given below:

A

Cprimal
W

/" wT(KTs-IK + T D-2)-l(KTs -_Cdual = ib + _ D-2d)

To prove that these are the same_ first notice that

(KTs-1K + T D-2)-I(KTs-I_ + _ D-2d)

D- _ A= (KTs-IK + _ )-iKTS-l(b - Kd) + d ,

since multiplying both by (KTs-IK + _ D -e) gives

A

KTS-Ib + _ D-2d = KTs-I(b - Kd) + (KTs-IK + T D -2) d .

Thus

ACdual = wTI-(L KTs-IK + T D-2) -i KTs-I (b - Kd)+ d]

Finally it can be shown that

DaKT(T S + KD2KT) -I = (KTs-IK + _ D-2) -l KTS -I
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by multiplying both sides on the left by (KTs-1K + T D-2) and on the

right by (T S + KDeKT), and collecting terms.

Numerical calculation

Although the confidence intervals could be calculated from the

formulas given_ it is better not to use either the primal or the dual

results but to use an orthonormalizing calculation to solve the fol-

lowing augmented least-squares problem:

I z= d

with

var _ = 0 I/_.D e

It is readily seen that the solution is the same as given before. By

using an orthonormalizing routine (52) rather than forming

(KTS- K+ or S + approximately half as many figures

are lost due to arithmetic round-off during the computation. The use

of an orthonormalizirgmethod avoids the formation of a symmetric product

KTs-1K or KD2K T and the accumulation of round-off errors due to this

step.

A flow chart of the computation is given in Fig. 23. The compu-

tation is organized so that the minimization is performed before any of

the windows are read in. Steps 5 and 6 determine a better inequality

for the dual vector z. After each recalculation of zmin and zmax_

another estimate of biaslU_ is made. This iterative "bias" loop

usually converges in several cycles; M = 5 is a typical number of
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Pl°k = Pk - T3std(pk) + sloplo
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i ALL NW WINDOWS
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Fig. 23. Flow diagram for the modified least-squares calculation.
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iterations. If desired, the entire least-squares procedure can be

repeated by using the improved inequality for z. This reduces any small

negative components of z which remain. Because almost all the computa-

tion must be repeated_ L is usually taken as i or 2 in moderate prob-

lems, and perhaps as large as 3 in small problems. Usually no signif-

icant improvement is noticed after the second iteration.

In the second stage of the computation, the window vectors are

read in one at a time_ and the confidence interval for ¢ is calculated

and published. As many windows as desired may be processed, since only

one needs to be loaded in the computer memory at a time. A rough

estimate of the computation time can be obtained based on the number of

floating-point operations that must be executed:

NO 0PS --"4._.[_C (NC + M) + 2.NW].(NH + M) ,

where in a typical problem (the neutron unfolding example of Chapter 3),

number of windows

number of comparison energies

number of count bins

number of "bias" loops

number of iterations

NW= 40

_: 36

NC : 87

M= 5

L= i

For the IBM-7090 computer_ the execution time for this problem was about

i min; including input and output. The reason that the modified least-

squares method is faster at present than the linear programming code is

that the form of the solution for u is independ@nt of the window

function w. Therefore most of the arithmetical problems can be solved



-96-

for all windows at once. The price paid for the speed of the modified

least-squares method is, of course_ that the final confidence intervals

are not as narrow as are theoretically possible.



• -97-

i0. MISCELLANEOUS APPLICATIONS

Solution of linear equations

In addition to unfolding instrument response, the general concept

of constrained estimation is useful for many other applications• For

example, the solution to simultaneous linear equations is often greatly

improved by the use of a priori information. As a dramatic numerical

example_ the system of equations given below has

i 1/2 i/3 1/4 i/5 ... 1/20
_/2 i/3 i/4 1/5 1/6 ... 1/21
• ,. ..o ... ..o ,., ... ...

1/20 1/21 1/22 1/23 1/24 ... 1/39

F
I

x

been solved:

i

1/2

1/20

. (io.i)

where the matrix of the system is the famous Hilbert matrix of order 20.

The solution of this particular set of equations by conventional methods

is extremely difficult; owing to the large magnitude of the elements of

the inverse Hilbert matrix. For the 20 by 20 matrix H,

4.ooo... IO2

-7.980... 104

o..

-1.378... i0 la

5•266... l0 s

m-i
-1.576•.. 109

-4.950.•• l0 is

•.. -1.378... iolj

•.. 5.238... i014

I

• ,. ... ... |

]5.238... i014 ... 4.872... i0e2"

If just one element of the right-hand side has an error of i part in l0 s ,

then the solution will be in error by a factor of about lOi°! Thus in

order to obtain just one decimal figure of accuracy, it is necessary to

carry approximately 30 decimalplaces of precision in the calculation,

or else resort to special techniques in which the intermediate steps are
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expressed as rational fractions. But if it is known in advance that the

solution x must be nonnegative_ then the constrained estimation method

can be used. The example of Eq. (i0.i) was constructed so that the solu-

tion was just x = (i, O, 0, ... 0). Then x was solved for by the linear

programming method and by the modified least-squares method. In order

to take into account the effect of machine round-off on the solution_

it was assumed that each component of b had a random error of i0-8_

since the word length of the I-BM-7090 computer corresponds to about

eight decimal digits. The calculated confidence intervals are shown in

Table i for the two methods at the 95_ confidence level. In this case,

it is seen that the use of the a priori information reduced the un-

certainty in the solution by about 20 orders of magnitude. The linear

programming computation required about 30 sec_ and the modified least-

squares computation required about 5 sec.

Unfolding gamma spectra

The interpretation of measurements obtained with gamma scintilla-

tion spectrometers is complicated by the presence of "tails_" "edges_"

and escape peaks and varying efficiency of the scintillator response.

Some pulse-height distributions for a 9- by 12-in. total absorption Nal

spectrometer are shown in Fig. 24 for several unit intensity mono-

energetic gamma sources. The modified least-squares method was used to

unfold the gamma spectrum due to capture of neutrons by the 27_keV

resonance of fluorine (measured by J. R. Bird, on loan to ORNL from

Atomic Energy Research Establishment, Harwell_ England). Figure 25

gives the upper portion of the pulse-height distribution. The pulse-

height channels were of equal width. Figure 26 gives the 90_
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TABLE i

The 95_ Confidence Interval for the Solution to Eq. (i0.i)

Linear Programming Method Modified Least Squares

True Solution Lower Edge Upper Edge Lower Edge Upper Edge

i

2

3

4

5

6

7

8

9

i0

ii

12

m3

14

15

16

17

18

19

2O

1.000000

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.999990

O0

O0

O0

O0

O0

O0

O0

O0

O0

O0

O0

0.O

0.0

0.O

0.O

0.0

0.0

0.0

0.0

1.O00009 0.999993 1.000005

0.0003 -0.001 0.001

o.ooo5 -o.oo3 o.oo3

0.0o2 -o.oo9 0.009

0.o02 -o.007 0.o07

0.006 -O.OlO O.OlO

o.oo9 -0.02i 0.02i

0.014 -0.022 0.022

0.0i5 -0.024 0.024

0.0i7 -0.025 0.025

0.024 -0.041 0.041

0.038 -0.074 0.074

0.032 -0.052 0.052

0.030 -0.049 0.049

0.026 -0.036 0.036

0.023 -0.058 0.058

o.o23 -o.o59 o.o59

0.017 -0.027 0.027

0.004 -0.009 o.oo9

0.008 -0.014 0.014
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Fig. 24. Pulse-height distribution obtained with 9 by 12 in. total

absorption NaI(TI) scintillation spectrometer for monoenergetic gamma
radiation.
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Fig. 26. Unfolded gamma spectrum, Since the window functions used

in the unscrambling had a full width at half maximum of 300 keV, the

resulting spectrum is a smoothed approximation to the true spectrum.
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confidence intervals for a number of Gaussian window functions with a

full width at half maximum of 300 keV. The modified least-squares code

was used for this calculation with

number of windows

number of comparison energy

number of count bins

number of "bias" loops

number of iterations

NW= 52

NH= 38

NC = 85

M= 5

L= 2

and a computation time of about 2 rain.

Note that only the higher energy portion of the spectrum was un-

folded. This is possible because of the one-sided character of the

response functions. It would not be possible, however_ to obtain just

the low-energy portion of the spectrum since it is contaminated by the

pulses from the higher energy portion.

Other applications

Another possible application is the numerical inversion of a

Fredhoim integral equation of the form

b

f(x) _- _K(x,y) g(y) dy

a

when the unknown function is known to be nonnegative. First, the con-

tinuous variable is replaced by a finite set (xl, x2, ... Xn) , and then
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the resulting problem is solved by the constrained estimation method.

Some advantages over the ordinary methods are the following:

i. Discontinuities in the kernel K(x,y) can be easily handled by

the techniques discussed in Chapter 4.

2. A singular kernel offers no special difficulties.

3- The result is in the fom of an interval containing the true

solution. The width of this interval includes the effect of replacing

the continuous variable with a discrete set and the effect of all other

computational devices. Thus there is no question as to the reliability

of the numerical solution (apart from round-off).

Another interesting possibility is the use of the constrained

estimation method for the solution of differential equations. A common

method involves replacing the continuous differential operator with a

discrete operator and solving the resulting system of linear equations.

It is well known (53) that the discrete operators resulting from self-

adjoint differential equations have nonnegative inverses. Thus the non-

negativity condition arises naturally for a large class of differential

equations. In this connection, the interesting paper by Young (54)

on the use of linear programming for the solution of differential equa-

tions from a different point of view should be noted.
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ii. ADDITIONAL CONSTRAINTS

Although the nonnegativity condition often arises in a natural way

in the solution of physically motivated unfolding problems_ occasionally

stronger s priori information is available. For example_ it may be known

that the unknown spectrum x(s) has a certain amount of smoothness. A

traditional way to incorporate such information is by means of the Wiener-

Kolmogrov smoothing theory (55). But the existence of a suitable a priori

probability distribution as required by the theory is sometimes difficult

to justify. The constrained estimation method provides an alternative

approach which is free from a priori probability considerations.

In many cases the additional information on x(s) is based upon

the knowledge that x(s) is the result of folding a smoothing-type kernel

R(s, So) with another more fundamental spectrum, Y(So). For example, in

neutron fission the gamma rays which are emitted from the fission frag-

ments have a continuous distribution because of the random Doppler shifts

from the moving particles. This shift is statistically distributed with

a standard deviation of about 30 keV for an energy of i MeV. Thus_ if

there were a monoenergetic decay in the moving fission-fragment system_

a broadened distribution of photon energies would result in the labo-

ratory system in which the measurements are made. As another example,

multiply scattered neutrons have a smoother spectrum than the source

spectrum because of the continuous character of the scattering kernel.

Thermal broadening and lifetime broadening are also familiar examples

of this kind of process.

I
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In such cases it has been found desirable to introduce this

information into the estimation problem. Let it be assumed that

x(s)=fR(s,s o) y(so) dso , (n.l.l)

y(so) __o . (ll.l.2)

In other words, the desired spectrum x(s) is the transformation of a

nonnegative function Y(So) with a kernel R(s, So). Then under certain

conditions, x(s) will be smoother than Y(So) (56). A nonnegativity con-

dition still applies, but to Y(So) instead of to the unknown spectrum

x(s). If y(s o) could be restrained to be nonnegative, then x(s) would

be at least as smooth as the smoothing kernel R(S, So).

Taking into account y(so), the estimation problem is :

given:

fKi(s x(s) ds = b + e , (11.2.1)

e is normally distributed with known variance matrix S

x(s):f_(s,s o) y(so) dso ,

, (11.2.2)

(11.2.3)

y(so) _ o ; (11.2.4)

wanted:

confidence interval _io, _up for ¢ : w(s) x(s) ds . (11.2.5)
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Note that the function ¢ of Eq. (11.2.5) is still a function of

x(s), instead of the underlying spectrum Y(So). It is my opinion that

the purpose of the instrument response unfolding problem is to answer

questions about the input to the instrument, x(s), having observed the

A A ,_

instrument output b = (hi, b2, ... bm ). Nevertheless, the experimenter's

main interest often lies in the underlying spectrum Y(So), and one can

sub stitute

¢' Sw'(s o) y(so) dso (11.3)

for Eq. (11.2.5) if desired. Another reason I prefer to use Eq. (11.2.5)

is that then the smoothing kernel R(s, So) need be known only approxi-

mately. If it is known that the spectrum x(s) should have a certain

smoothness, it leads to a conservative error to assume a broadening

kernel less smooth than theory indicates. Then the solution x(s) will

not be constrained as strongly as it could be, and the confidence inter-

val will be valid. In any event, whether it is decided to include the

interpretation of the underlying spectrum Y(So) as a part of the unfold-

ing problem, or to deal with this part as a separate problem, the

resulting estimation problem is of essentially the same form.

Equations (11.2) can be put into exactly the same form as for

the previous case in Chapter 3, where x(s) m O, if the expression for
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x(s) is introduced in terns of y(s o) into the integrals.

lem is:

given:

_i(s) R(s,so) y(so) ds° ds:b i+e i

Then the prob-

e is normally distributed with known variance matrix S

y(so) _ 0 ;

want ed:

confidence interval [_l°_ %uPl for

This may be simplified to:

given:

So) Y(So) ds 0 = b. + e.
1 1

e is normally distributed with known variance matrix S

y(so) __0 ;

wanted:

confidence interval [$1o _up] for ¢ =7W(So) Y(So) ds o

(11.5)
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where

_.(so)_. :f1<i(s)R(s,so) ds , (11.6)

and

w(so) :f w(s)R(s,so) ds (Ii. 7)

Equation (11.5) is of exactly the same form as that previously ob-

tained and can be solved by the same methods. Thus the incorporation of

the more generalized constraints requires only modifying the response

functions according to Eq. (11.6) and the window function according to

Eq. (11.7). The reduction to discrete form should be done after the

modification rather than before, since the modified functions are

smoother and hence require fewer comparison points for a satisfactory

piecewise approximation.

Besides choosing a physically motivated smoothing kernel R(s, So)

to impose regularity on the solution_ kernels can be devised which will

constrain the solutions to be monotonically decreasing_ concave_ etc.

In addition, a series of smoothing kernels can be applied in cascade.

Several other possible ways of introducing information into the formula-

tion of the problem are possible, but perhaps are best discussed with

respect to a particular application.
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12. CONCLUSIONS

The basic motivation of the unfolding methods which have been

discussed is the desire to use as much information as is known about

the solution_ consistent with the cost of obtaining a solution. The

incorporation of nonnegativity of a spectral function into the unfold-

ing problem is conceptually simple. The unfolding problem is merely

posed in such a way to allow use of the intersection of the conventional

solution for the spectrum with the positive region of the solution.

It has been shown by example that several typical practical prob-

lems_ which are difficult to approach from the classical methods_ yield

easily to the new method. In addition_ the primal-dual structure of

constrained extremal problems provides a means of justifying the

replacement of a continuous problem by a discrete one and allows errors

in the kernel (in the approximation of small errors) to be properly

taken into account. Computationally, it is no longer necessary to

distinguish between a singular and a nonsingular kernel_ since the

mathematical formulation and solution of the problem are identical.

The two codes described here are presently in use. They are

limited to problems that cam be reduced to a finite form of order about

i00 by i00. With the development of newer computers and the develop-

ment of more efficient algorithms_ this size limitation will surely be

removed.
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